

Journal of Hazardous Materials B133 (2006) 129-134

Journal of Hazardous Materials

www.elsevier.com/locate/jhazmat

A simple method to assess detonation temperature without using any experimental data and computer code

Mohammad Hossein Keshavarz*, Hamid Reza Nazari

Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115, Islamic Republic of Iran

Received 16 April 2005; received in revised form 2 July 2005; accepted 3 October 2005 Available online 16 November 2005

Abstract

Detonation temperature of $C_a H_b N_c O_d$ explosives can be predicted from *a*, *b*, *c*, *d* and calculated gas phase heat of formation of explosives without using any assumed detonation products and experimental data. Two new correlations are introduced for calculation of detonation temperature of aromatic and non-aromatic explosive compounds so that it is shown here how simply calculated heat of formation by additivity rule and atomic composition are only necessary data for this simple prediction. Calculated detonation temperatures by the introduced correlations for both pure and explosive formulations show good agreement with respect to measured detonation temperatures and complicated computer codes. The average mean absolute error in detonation temperature is within about 7.0%.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Detonation temperature; $C_aH_bN_cO_d$ explosives; Gas phase heat of formation; Additivity rule

1. Introduction

Detonation products of high explosives are obtained at high pressures and temperatures simultaneously, which covers a wide range of pressures, $\sim 1-100$ GPa, and temperatures, \sim 1000–5000 K [1]. One of the detonation parameters with least information in the Chapman–Jouguet (C–J) state is detonation temperature, which is measured experimentally from the brightness of the detonation front as it proceeds toward detector. Thermochemical/hydrodynamic computer codes such as BKW [2] and RUBY [3] and latter's offspring TIGER [4], CHEQ [5], and CHEETAH [6] (a C version of TIGER) with an appropriate empirical equation of state such as Becker-Kistiakosky-Wilson (BKW-EOS) [7], the Jacobs-Cowperthwaite-Zwisler (JCZ-EOS) [8,9] and Kihara-Hikita-Tanaka (KHT-EOS) [10] can be used to determine detonation properties. Of different equations of states, the BKW-EOS in spite of its weak theoretical basis is used extensively to calculate detonation properties of high explosives. The BKWC-EOS [6], BKWR-EOS [11] and BKWS-EOS [12] are three different parameterizations of the

0304-3894/\$ – see front matter @ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jhazmat.2005.10.001

BKW-EOS. The BKWS-EOS is one of the best equations of states for predicting detonation temperatures. The computation of detonation parameters by computer codes in spite of its complexity usually requires measured condensed heat of formation of the explosive. It should be noted that the accuracy of predictive methods are not necessarily enhanced by greater complexity.

The development of simple reliable methods is attractive to chemist for the expenditure connected with the development and synthesis of a new energetic material. Some new various empirical methods have been recently introduced for simple evaluation or desk calculation of performance parameters such as C-J detonation pressure, detonation velocity and heat of detonation of ideal and less ideal pure or mixture of different classes of explosives [13–19]. These methods can develop systematic and scientific formulations of appropriate futuristic target molecules having desired performance and the other properties. Detonation temperature can be calculated via molar heat capacities of detonation products if the quantities and the nature of the gaseous products as well as heat of detonation are known. A review of existing methods based on this procedure is given elsewhere [20]. The main focus, thereafter, will be on introducing the simplest method for calculating detonation temperature of high explosives without the use of any experimental data of the explosive and detonation products. In the recent work, a new procedure is used to introduce two new correlations for desk cal-

 ^{*} Corresponding author. Tel.: +98 312 522 5071; fax: +98 312 522 5068. *E-mail addresses:* mhkeshavarz@mut-es.ac.ir, mhkir@Yahoo.com
(M.H. Keshavarz).

culation of detonation temperature of aromatic and non-aromatic explosives. The purpose of this work is to correlate and to predict the detonation temperature of $C_aH_bN_cO_d$ explosives, which can be predicted directly from the values of *a*, *b*, *c*, *d* and gas phase heat of formation of the explosive. Later can be determined by additivity rules related to the molecular structure, e.g. the methods of Benson [21], Yoneda [22], Joback [23], etc., with little loss of accuracy. It is felt that the introduced correlations represent a significant advance in a priori computational method of detonation temperature. Another goal of this work is to provide insight to understanding the molecules, which are responsible for higher detonation temperatures will also be tested with experimental data as well as computed results of BKWR-EOS and BKWS-EOS for well-known pure and mixture of explosives.

2. Procedure for determining of detonation temperature

The detonation pressure and temperature are not wellresolved measurements in contrast to detonation velocity [12]. The measurements of detonation temperature are usually done by the brightness of the detonation front interacting with a detector with absolute accuracies estimated to be ± 100 K for liquid explosives and ± 200 K for solid explosives. Since any voids or density discontinuities can lead to measurements of the brightness of the shocked air or shocked detonation products rather than the C–J detonation products, density discontinuities free system such as a liquid or a single crystal is to be useful for measurement of the detonation temperature. The C-J detonation temperature of nitromethane is better known than for any other explosives because it is transparent. Measured its C-J detonation temperature results lie between 3300 and 3500 K [24]. Experimental data for detonation temperatures are scarce because difficulty of measurement of detonation temperature. A blackbody of equivalence photographic brightness with the absolute accuracy of about 200 K is usually used for reporting detonation temperatures. Since it is not known whether the detonation products radiate like a blackbody, the relationship between these numbers and the actual detonation temperature is unknown.

Predicting of the detonation temperature of a new high explosive from a given molecular structure without using experimental measurement is very important to chemist because the calculated detonation temperature as well as the other detonation parameters of a notional explosive compound are recognized to be cost-effective, environmentally desirable and time-saving in the decision to whether it is worth the effort to attempt a new or complex synthesis. The detonation temperature can be obtained by assuming that heat of detonation of the explosive is entirely used to the products. Molar heat capacities of detonation products at or near detonation temperature as well as experimental condensed heat of formation of the explosive would be needed in this situation [25]. It can be assumed that the energy released is completely transferred to detonation products during a very short time because decomposition reaction of explosive in detonation is very fast. It is reasonable to assume that all the chemical bonds present in the reacting molecules are broken, resulting in the formation of monatomic species, which subsequently recombine to stable products. It is, therefore, possible to represent detonation temperature of an explosive as a function of its composition. It was recently shown that linear combination of elemental compositions of explosive and estimated gas phase heat of formation with some adjustable parameters can be used to derive two reliable correlations for obtaining heats of detonation of aromatic and non-aromatic explosives [18]. Crystal effects can also be excluded for determining the detonation temperature in this manner [13,14] because crystalline heat of formation can correlate with gas phase heat of formation for some classes of explosives [26]. Since so very approximately it can be stated that detonation temperature is proportional to heat of detonation [27], the results indicated that the following general equation is suitable for $C_aH_bN_cO_d$ explosive with six adjustable parameters A–F in it:

$$T_{\rm d}({\rm K}^{-1}) = {\rm A} + {\rm B}a' + {\rm C}b' + {\rm D}c' + {\rm E}d' + {\rm F}\Delta {\rm H}_f^{\circ'}({\rm g}) \tag{1}$$

where a', b', c', d' and $\Delta H_f^{\circ}(g)$ are a, b, c, d and gas phase heat of formation of explosive divided by molecular weight of explosive respectively. Agreement with measurement has been secured in that the adjustable constants in introduced correlation consistent with experimental results. To obtain reliable correlations for determining of detonation temperature, experimental detonation temperatures were used to optimize the correlations. The measured values of TNT, TETRYL, HMX, NG, NM, PETN, RDX and TNM were used for obtaining adjustable parameters. The method of Kamlet and Hurwitz [28] can be used to find coefficients A–F in Eq. (1). The results show that two following correlations (2) and (3) can be obtained for aromatic and non-aromatic explosives, respectively:

$$T_{\rm d}/1000 = -75.8 + 950.8a' + 12.3b' + 1114.9c' +1324.5d' + 1.2\Delta H_f^{\circ'}(g)$$
(2)

Table 1

Parameters used in calculations

Explosive ^a	<i>a</i> ′	b'	<i>c</i> ′	d	$\Delta \mathrm{H}_{f}^{\circ\prime}(\mathrm{kcal/g})^{\mathrm{b}}$
ABH	0.02746	0.00686	0.01602	0.02746	0.05481
DATB	0.02469	0.02058	0.02058	0.02469	0.05802
DIPM	0.02643	0.01322	0.01762	0.02643	0.04912
HNAB	0.02655	0.00885	0.01770	0.02655	0.05066
HNS	0.03111	0.01333	0.01333	0.02667	0.06600
NONA	0.02835	0.00787	0.01417	0.02835	0.09276
PA	0.02620	0.01310	0.01310	0.03057	-0.17031
TATB	0.02326	0.02326	0.02326	0.02326	0.07519
TETRYL	0.02439	0.01742	0.01742	0.02787	0.03233
TNT	0.03084	0.02203	0.01322	0.02643	-0.01894
HNB	0.01724	0.00000	0.01724	0.03448	0.10460
DEGN	0.02041	0.04082	0.01020	0.03571	-0.66327
HMX	0.01351	0.02703	0.02703	0.02703	0.15203
NG	0.01322	0.02203	0.01322	0.03965	-0.56828
NM	0.01639	0.04918	0.01639	0.03279	-0.29344
NQ	0.00962	0.03846	0.03846	0.01923	0.48462
PETN	0.01582	0.02532	0.01266	0.03797	-0.55063
RDX	0.01351	0.02703	0.02703	0.02703	0.17027
TNM	0.00510	0.00000	0.02041	0.04082	-0.14133

^a See Appendix A for glossary of compound names.

^b Gas phase heat of formation was calculated by Joback additive group procedure [23].

Table 2	
Comparison of detonation temperature of the new correlations,	BKWR-EOS and BKWS-EOS with measured values [12]

ABH 1.64 4710 3960 4.689 DATB 1.80 3550 2860 3643 DIPM 1.76 4040 3310 4307 HNAB 1.60 4150 3800 4209 HNA 1.60 4120 3300 4209 INS 1.60 4100 3380 4161 1.70 4120 3300 4161 1.71 4010 3380 4161 1.71 4010 3380 4161 1.73 4210 3460 3987 1.64 4080 3520 3418 TETERVL 1.73 4210 3460 3987 1.64 4240 3520 3987 -1.67 1452 5.07 1.64 4200 3530 3987 -1.67 1452 5.07 1.64 4200 3530 3511 1.3 2.53 9.37 1.64 4300 3840 <	Explosive ^a	ρ_0 (g/cc)	T_{\exp} (K)	T _{BKWS-EOS} (K)	T _{BKWR-EOS} (K)	T_d (K)	%Dev BKWS-EOS ^b	%Dev BKWR-EOS ^b	%Dev new ^b
DATE 1.30 350 260 261 DIFM 1.76 4040 310 420 HNAR 1.60 4120 300 4209 INN 1.60 4120 3300 4209 NONA 1.70 4130 330 4161 NONA 1.70 4030 3420 4161 TATE 1.88 3250 2500 3418 TATE 1.88 3200 3400 3967 1.71 4200 3500 3967 -1.67 1.5.2 507 1.71 4200 3500 3967 -1.67 1.5.2 507 1.73 4200 3500 3967 -1.67 1.5.2 507 1.73 4300 3500 3501 3507 -1.67 1.5.2 507 1.74 4300 3500 3501 3511 -1.60 10.70 7.28 1.75 720 3200 3511 <	ABH	1.64		4710	3960	4689			
1.8360270364DIPM1.76460330420HNS1.6046203500450HNS1.7041203500420NONA1.704510780470PA1.7640032041611.7040032041611.7140032041611.72420346039671.734210346039671.7442034039671.75420346039671.734210346039671.6442043037801.734210346039671.6442043037801.7543037803971.644204303801.653780397-1.861.704303803971.7142034039871.724303803971.734303803971.744303803971.754303803971.754303803971.754403903971.754403903971.754403903971.754403903971.754403903111.754403903111.754403903111.7544039	DATB	1.80		3550	2860	3643			
DIPM1.640403304207HNAR1.604033900459HNS1.70412035004209NONA1.70412035004209NONA1.70412035004209Pa1.714030320041611.724030320041611.734210346039871.744230350039871.754200352039871.714200436039871.734210350039871.74420045039871.75430048039871.7641525.071.78430048039871.79430048039871.70430048039871.714200352039871.7243004803971.7342003843971.7443004303801.75430038035111.7643004803801.7643004803801.7742033035111.78379033035111.7944038041621.7944038041621.7944038041621.7944038041621.7944038041621.794403804162 <td></td> <td>1.78</td> <td></td> <td>3690</td> <td>2870</td> <td>3643</td> <td></td> <td></td> <td></td>		1.78		3690	2870	3643			
HNAB 1.60 4620 3900 4509 HNS 1.60 4120 3500 4209 NONA 1.70 4510 3780 4707 PA 1.76 400 3280 4161 1.71 400 3280 4161 1.76 409 3280 4161 1.71 400 3280 3418 TATR 1.85 320 2580 3418 1.71 4200 3480 3987 -1.67 14.52 5.07 1.68 4240 3500 3987 -1.63 14.52 5.07 1.68 4240 3500 3987 -1.63 14.52 5.07 1.68 4240 3500 3987 -1.63 14.52 5.07 1.69 4200 4300 3840 3987 -1.63 14.52 5.07 1.60 4300 3840 3987 -1.63 14.52 5.07 1.60 4300 3840 3987 -1.64 12.03 7.98 1.71 1.43 3400 3840 3987 -1.64 12.03 7.92 1.80 3400 3700 3840 <td< td=""><td>DIPM</td><td>1.76</td><td></td><td>4040</td><td>3310</td><td>4207</td><td></td><td></td><td></td></td<>	DIPM	1.76		4040	3310	4207			
INN1.6041035004209NONA1.70410035004707PA1.76400333041611.813200320041611.82320032303418TATB1.85320032503418TETRYI,1.734210346039871.64420043503987-1.6714.521.63430043003987-1.6714.525.071.64420043803987-1.6810.707.281.00430043803987-1.6714.525.071.63430037803987-1.6714.525.071.644300438038403987-1.8610.707.281.004300438038403987-1.8610.707.281.01430033003511-10.29-0.29-3.261.02370033003511-1.142.57.281.02360036041620.7019.303211.024300330041620.7019.303211.034300350350-6.8111.9714.181.04370035041620.7019.303211.02430035041620.7019.303211.03430035035041620.7010.21.72	HNAB	1.60		4620	3900	4509			
norm 1.70 4120 330 4209 NONA 1.70 4510 3780 4707 PA 1.71 4030 3330 4161 TATB 1.88 3250 2550 3418 TATB 1.85 3250 2550 3418 TATB 1.85 3250 2580 3418 TATB 1.85 3250 2590 3418 TATB 1.85 3250 2590 3418 TATB 1.84 4200 4270 3987 -1.67 1.452 5.07 1.64 4200 4370 3987 -1.67 1.452 5.07 1.64 4300 3340 3987 -1.67 1.52 5.07 1.00 4390 4340 3840 3987 -1.67 1.52 5.07 1.01 4390 4340 3840 3987 -1.67 1.52 5.07 1.02 4300 3511	HNS	1.60		4150	3580	4209			
NONA 1.70 4510 3780 4707 PA 1.76 4010 3280 4161 1.60 4080 3420 4161 TATB 1.85 3260 2580 3418 TETRYL 1.73 4210 4460 3987 1.68 4200 330 3987 - 1.68 4200 3520 3987 - 1.6.7 14.52 5.07 1.68 4200 4350 3780 3987 - 1.6.7 14.52 5.07 1.40 4130 4350 3780 3987 - 1.6.8 0.70 7.2.8 1.20 4300 4380 3840 3987 - 1.6.6 0.70 7.2.8 1.10 4300 4340 3840 3987 - 1.6.6 3.00 3.210 1.15 3780 3380 3511 - - - - - - - - 3.210 3511 - - - 3.210 3511 -		1.70		4120	3500	4209			
PA 1.76 4010 3280 4161 1.60 4080 3420 4161 TATB 1.85 3260 2580 3418 TETRYL 1.73 4210 3460 3987 1.61 4200 4500 3987 - 1.68 4300 3987 - 5.07 1.68 4300 4500 3987 - 5.07 1.68 4300 4500 3987 - 5.07 1.64 4200 4500 3987 - 1.63 5.07 1.64 4300 4500 3790 3987 - 1.64 1.253 7.28 1.60 3400 350 3510 3510 -	NONA	1.70		4510	3780	4707			
1.71 4030 3330 4161 TATB 1.88 3250 2550 3418 TETRYL 1.73 4210 3400 3987 1.71 4220 3400 3987 1.64 4200 3500 3987 1.61 4200 4500 3987 1.64 4200 3500 3987 -1.67 1.452 5.07 1.61 4200 4300 3700 3987 -1.67 1.452 5.07 1.00 4390 430 3700 3987 -1.67 1.452 5.07 1.00 4390 430 3840 3987 -1.80 10.070 7.28 1.00 4390 3810 3511 -1.14 12.53 9.18 TKT 1.64 3720 3210 3511 -1.14 12.53 9.18 1MA 1.89 3600 3400 5613 -1.14 12.53 3.21 1NB	PA	1.76		4010	3280	4161			
1.60 4080 3420 4161 TATB 1.88 3260 2580 3418 TETRYL 1.73 4210 3460 3987 1.61 4200 3520 3987 - 1.61 4200 3520 3987 - 1.67 1.452 5.07 1.60 4300 370 3987 - 1.66 10.70 7.28 1.20 4300 3840 3987 - 1.86 10.70 7.28 1.20 4300 430 3840 3987 - 1.86 10.70 7.28 1.20 4300 330 3511 - 1.25 9.18 1.20 4300 3610 3300 3511 - 0.29 -0.29 -3.26 1.80 1.97 5640 4500 5613 - - 1.99 - 0.29 -3.21 160 4250 3500 3220 3511		1.71		4030	3330	4161			
TATE 1.85 3290 2590 3418 TETENL 1.73 4210 3460 3987 1.71 4220 3480 3987 1.61 4200 4200 3590 3987 1.64 4200 4200 3590 3987 -1.67 14.52 507 1.61 4200 4300 3790 3987 -1.67 14.52 370 1.00 4300 430 3840 3987 -1.16 10.70 7.28 1.00 4300 430 3840 3987 1.14 12.53 9.18 TINT 1.64 3720 3210 3511 -10.29 -0.29 -3.26 0.80 3610 3330 3511 -10.29 -0.29 -3.26 DEGN 1.75 5640 460 5613 -11.97 4.18 NM 1.89 470 300 4162 -0.70 -9.30 3.21 DEGN 1.49 4400 3004 4162 -6.81 11.97 14.18		1.60		4080	3420	4161			
1.85 3260 2580 3418 TETRYL 1.73 4210 3460 3987 1.68 4240 3520 3987 - 1.68 4200 4320 3987 - 1.68 4200 4300 3987 - 1.67 1.452 5.07 1.40 4130 4360 3750 3987 - 1.68 10.70 7.28 1.20 4300 4380 3840 3987 1.14 12.53 7.28 1.71 1.64 3720 3210 3511 - 0.29 -3.26 1.85 3780 3330 3511 - 0.29 -3.26 HNB 1.97 5640 4360 5613 - 0.70 19.30 3.21 HNA 1.89 4900 470 3900 4162 0.70 19.30 3.21 LEGN 1.80 4300 450 3750 365 -6.81	TATB	1.88		3250	2550	3418			
TETRYI, 1.71 1.73 4210 3460 3987 1.61 4240 3520 3987 -1.67 14.52 5.07 1.64 4130 4350 3750 3987 -5.33 9.20 3.46 1.40 4130 4360 3780 3987 -1.67 14.52 5.07 1.20 4300 4380 3780 3987 -1.86 10.70 7.28 1.00 4390 4340 3840 3987 -1.86 10.70 7.28 1.00 4390 4300 3300 3511 -1.45 1.45 3780 3330 3511 -1.02 -0.29 -3.26 1.80 3.400 3750 3400 450 360 1612 -0.70 19.30 321 1.81 4070 3090 4162 0.70 19.30 321 -1.20 41.88 4000 4162 0.70 19.30 321 1.72 1.06 4.60 450 3750 366 -6.81 11.97 14.18 N		1.85		3260	2580	3418			
1.71 420 3480 3987 1.64 4200 4270 3590 3987 -1.67 14.52 5.07 1.36 4300 4300 370 397 -5.33 9.20 3.46 1.36 4300 4300 380 3987 -1.16 10.70 7.62 1.00 4300 4300 3840 3987 -1.16 10.70 7.62 1.00 4300 4300 3810 3511 -1.14 12.53 9.18 1.14 1.36 3790 3300 3511 -10.29 -0.29 -3.26 1.00 3400 370 320 511 -10.29 -0.29 -3.26 1.08 1.97 5640 4300 5613 -114 12.53 321 1.00 1.38 3600 3240 4162 0.70 19.30 3.21 1.01 1.48 3000 4162 0.70 19.30 3.21	TETRYL	1.73		4210	3460	3987			
1.68		1.71		4220	3480	3987			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.68		4240	3520	3987			
1.40 4130 4350 3750 3987 -5.33 9.20 3.46 1.20 4300 4380 3840 3987 -1.86 10.70 7.28 TNT 1.64 3720 3210 3511 1.14 12.53 9.18 TNT 1.45 3780 3330 3511 -1.029 -0.29 -3.26 0.80 3400 3750 3410 3511 -10.29 -0.29 -3.26 1.00 4300 4300 3610 3330 3511 -10.29 -0.29 -3.26 0.80 3600 3240 4412 - - - - HMX 1.89 4070 3090 4162 0.70 19.30 3.21 1.20 4450 3830 4162 0.70 19.30 3.21 1.20 4450 3830 312 -4.37 6.12 1.72 NM 1.13 3430 3580 3220 </td <td></td> <td>1.61</td> <td>4200</td> <td>4270</td> <td>3590</td> <td>3987</td> <td>-1.67</td> <td>14.52</td> <td>5.07</td>		1.61	4200	4270	3590	3987	-1.67	14.52	5.07
1.36 4360 3780 3987		1.40	4130	4350	3750	3987	-5.33	9.20	3.46
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.36		4360	3780	3987			
$ \begin{array}{ c c c c c c } 1.00 & 4390 & 4340 & 3840 & 3987 & 1.14 & 12.53 & 9.18 \\ 1.45 & 3720 & 3210 & 3511 \\ 1.36 & 3400 & 3750 & 3380 & 3511 \\ 1.36 & 3400 & 3750 & 3410 & 3511 & -10.29 & -0.29 & -3.26 \\ 1.00 & 3400 & 3750 & 3240 & 4412 & & & & & & & & & & & & & & & & & & &$		1.20	4300	4380	3840	3987	-1.86	10.70	7.28
TNT 1.64 3720 3210 3511 1.45 3780 3330 3511 1.36 3790 3310 3511 1.00 3400 3750 3410 3511 0.80 3610 330 3511 -10.29 -0.29 -3.26 HNB 1.97 5640 4360 5613 - - - DEGN 1.38 3690 3240 4412 - - - - - - - 3.21 - - - - 3.21 - - - 3.21 - - - 3.21 - - - 3.21 - - 3.21 - - 3.21 - - 3.21 - - 3.21 - - 3.21 - - 3.21 - - 3.21 - - 3.21 - - 3.21 - - 3.21 - - 3.21 - - 3.21 - - 3.21 -		1.00	4390	4340	3840	3987	1.14	12.53	9.18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TNT	1.64		3720	3210	3511			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.45		3780	3330	3511			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.36		3790	3380	3511			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1.00	3400	3750	3410	3511	-10.29	-0.29	-3.26
HNB 1.97 5640 4360 5613 DEGN 1.38 3690 3240 4412 HNX 1.89 4070 3090 4162 0.70 19.30 3.21 1.40 4300 4270 3470 4162 0.70 19.30 3.21 1.40 4380 3680 4162 0.70 19.30 3.21 0.75 4440 4000 4162 0.70 19.30 3.21 NG 1.60 4260 4550 3750 3656 -6.81 11.97 14.18 NM 1.13 3430 3580 3220 3371 -4.37 6.12 1.72 NQ 1.72 2760 2130 2882 282 282 2830 282 PETN 1.76 4280 3330 4161 0.23 20.0 5.43 1.45 2790 2210 2882 2882 2882 288 20.0 5.43 1.60 4400 4300 3520 4161 0.23 20.0		0.80		3610	3330	3511			
DEGN 1.38 3690 3240 4412 HMX 1.89 4070 3090 4162 0.70 19.30 3.21 1.40 4300 4270 3470 4162 0.70 19.30 3.21 1.40 4380 3600 4162 0.70 19.30 3.21 1.40 4450 3830 4162 0.70 19.30 3.21 0.75 4440 4000 4162 0.70 14.18 1.197 14.18 NM 1.13 3430 3580 3220 3371 -4.37 6.12 1.72 NQ 1.72 2760 2130 2882 1.62 2700 2210 2882 1.55 2830 2200 2882 282 2830 330 4161 1.70 4320 3400 4161 0.23 20.0 5.43 1.60 4400 4390 3520 4161 0.23 20.0 5.43 1.45 4490 3710 4161 0.23 20.0 5.43<	HNB	1.97		5640	4360	5613			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DEGN	1.38		3690	3240	4412			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	HMX	1.89		4070	3090	4162			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.60	4300	4270	3470	4162	0.70	19.30	3.21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.40		4380	3680	4162			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.20		4450	3830	4162			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.00		4480	3900	4162			
NG 1.60 4260 4550 3750 3656 -6.81 11.97 14.18 NM 1.13 3430 3580 3220 3371 -4.37 6.12 1.72 NQ 1.78 2740 2090 2882 - - 1.72 1.62 2790 2210 2882 - 1.72 -		0.75		4440	4000	4162			
NM 1.13 3430 3580 3220 3371 -4.37 6.12 1.72 NQ 1.78 2740 2090 2882 - 1 -	NG	1.60	4260	4550	3750	3656	-6.81	11.97	14.18
NQ 1.78 2740 2090 2882 1.72 2760 2130 2882 1.62 2790 2210 2882 1.55 2830 2260 2882 PETN 1.76 4280 3330 4161 1.70 4320 3400 4161 1.60 4400 4390 3520 4161 0.23 20.0 5.43 1.45 4490 3710 4161 0.23 20.0 5.43 1.45 4490 3710 4161 0.23 20.0 5.43 0.99 4640 4150 4161 0.23 20.0 5.43 0.88 4640 4240 4161 0.24 1.66 4300 4460 0.30 4450 4470 4161 1.23 4600 4161 0.25 4400 4460 4161 1.24 1.27 4200 3300 4184 1.77 4160	NM	1.13	3430	3580	3220	3371	-4.37	6.12	1.72
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NQ	1.78		2740	2090	2882			
1.62 2790 2210 2882 PETN 1.76 4280 3330 4161 1.70 4320 3400 4161 1.60 4400 4390 3520 4161 0.23 20.0 5.43 1.45 4490 3710 4161 0.23 20.0 5.43 1.45 4490 3710 4161 0.23 20.0 5.43 0.99 4640 4150 4161 0.23 20.0 5.43 0.88 4640 4240 4161 0.23 20.0 5.43 0.25 4400 4161 0.23 20.0 5.43 RDX 1.80 4140 4240 4161 1.23 4600 4161 0.30 4450 4460 4161 1.23 400 4161 0.25 4400 4161 4161 1.23 4160 320 4184 1.77 4160 3260 4184 1.23 4184 1.23 4184 1.66 4320 4230	-	1.72		2760	2130	2882			
1.55 2830 2260 2882 PETN 1.76 4280 3330 4161 1.70 4320 3400 4161 1.60 4400 4390 3520 4161 0.23 20.0 5.43 1.45 4490 3710 4161 0.23 20.0 5.43 1.45 4490 3710 4161 0.23 20.0 5.43 0.99 4640 4150 4161 0.23 20.0 5.43 0.88 4640 4240 4161 0.23 20.0 5.43 0.48 4560 4460 4161 0.25 4400 4460 4161 0.30 4450 4470 4161 0.25 4400 4460 4161 0.25 4400 4460 4161 161 177 1460 3260 4184 172 4200 3330 4184 1.45 1.50 3.15		1.62		2790	2210	2882			
PETN 1.76 4280 3330 4161 1.70 4320 3400 4161 0.23 20.0 5.43 1.60 4400 4390 3520 4161 0.23 20.0 5.43 1.45 4490 3710 4161 0.23 20.0 5.43 1.45 4490 3940 4161 0.23 20.0 5.43 0.99 4640 4150 4161 0.23 20.0 5.43 0.88 4640 4240 4161 0.23 20.0 5.43 0.88 4640 4240 4161 0.23 20.0 5.43 0.48 4560 4460 4161 1.0 1.0 1.0 1.0 RDX 1.80 4140 3220 4184 1.0 1.0 1.0 1.0 1.0 1.77 4160 3260 4184 1.0 1.0 3.15 3.15		1.55		2830	2260	2882			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PETN	1.76		4280	3330	4161			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.70		4320	3400	4161			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.60	4400	4390	3520	4161	0.23	20.0	5.43
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.45		4490	3710	4161			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.23		4600	3940	4161			
0.88 4640 4240 4161 0.48 4560 4460 4161 0.30 4450 4470 4161 0.25 4400 4460 4161 RDX 1.80 4140 3220 4184 1.77 4160 3260 4184 1.72 4200 3330 4184 1.66 4320 4230 3400 4184 2.08 21.30 3.15		0.99		4640	4150	4161			
0.48 4560 4460 4161 0.30 4450 4470 4161 0.25 4400 4460 4161 RDX 1.80 4140 3220 4184 1.77 4160 3260 4184 1.72 4200 3330 4184 1.66 4320 4230 3400 4184 2.08 21.30 3.15		0.88		4640	4240	4161			
0.30 4450 4470 4161 0.25 4400 4460 4161 RDX 1.80 4140 3220 4184 1.77 4160 3260 4184 1.72 4200 3330 4184 1.66 4320 4230 3400 4184 2.08 21.30 3.15		0.48		4560	4460	4161			
0.25 4400 4460 4161 RDX 1.80 4140 3220 4184 1.77 4160 3260 4184 1.72 4200 3330 4184 1.66 4320 4230 3400 4184 2.08 21.30 3.15		0.30		4450	4470	4161			
RDX 1.80 4140 3220 4184 1.77 4160 3260 4184 1.72 4200 3330 4184 1.66 4320 4230 3400 4184 2.08 21.30 3.15		0.25		4400	4460	4161			
1.774160326041841.724200333041841.6643204230340041842.0821.303.15	RDX	1.80		4140	3220	4184			
1.724200333041841.6643204230340041842.0821.303.15		1.77		4160	3260	4184			
1.66 4320 4230 3400 4184 2.08 21.30 3.15		1.72		4200	3330	4184			
		1.66	4320	4230	3400	4184	2.08	21.30	3.15

Table 2 (Continued)

Explosive ^a	$\rho_0 (g/cc)$	T_{\exp} (K)	$T_{\rm BKWS-EOS}$ (K)	T _{BKWR-EOS} (K)	T_d (K)	%Dev BKWS-EOS ^b	%Dev BKWR-EOS ^b	%Dev new ^b
	1.60		4280	3480	4184			
	1.46		4360	3630	4184			
	1.40	4610	4390	3690	4184	4.77	19.96	9.24
	1.29		4430	3780	4184			
	1.20	4610	4460	3840	4184	3.25	16.70	9.24
	1.10		4480	3890	4184			
	1.00	4600	4490	3920	4184	2.39	14.78	9.04
	0.95		4490	3920	4184			
	0.70		4450	4060	4184			
	0.56		4450	4180	4184			
TNM	1.64	2800	2860	2180	3178	-2.14	22.14	-13.50
COMP B-3	1.72		4000	3260	3918			
CYCLOTOL-78/22	1.76		4070	3240	4308			
CYCLOTOL-77/23	1.74		4070	3260	4032			
CYCLOTOL-75/25	1.76		4050	3240	4019			
CYCLOTOL-75/25	1.62		4130	3400	4019			
CYCLOTOL-70/30	1.73		4040	3270	3985			
CYCLOTOL-65/35	1.72		4030	3270	3952			
CYCLOTOL-60/40	1.74		3990	3240	3918			
CYCLOTOL-60/40	1.72		4000	3260	3918			
CYCLOTOL-50/50	1.63		4000	3340	3851			
OCTOL-78/22	1.82		4020	3160	3984			
OCTOL-76/23	1.81		4020	3170	3974			
OCTOL-75/25	1.81		4010	3170	3965			
OCTOL-60/40	1.80		3950	3160	3859			
PENTOLITE	01.64		4030	3360	3785			

^a See Appendix A for glossary of compound names. ^b %Dev = $\frac{\text{measured}-\text{predicted}}{\text{measured}} \times 100.$

$T_d/1000 = 149.0 - 1513.9a' - 196.5b' - 2066.1c'$

 $-2346.2d' + 1.2\Delta H_{f}^{\circ'}(g)$ (3)These equations provide the simplest empirical procedure for

estimation of detonation temperature of pure explosives, which require as input information only the elemental composition and heat of formation of the explosive in the gas phase as calculated from an additivity method such as Benson [21], Yoneda [22], Joback [23], etc. The calculated gas phase heats of formation of explosives by additivity rule and the other necessary data are shown in Table 1 for the oxygen lean as well as oxygen-rich pure explosives. As an example, TNT according to Joback method

[23] has two =CH- and four =c < ring increments as well asone –CH₃ and three –NO₂ increments, which gives $\Delta H_f^{\circ'}(g) =$ -4.3 kcal/mol. Thus, as mentioned in Table 1, TNT with molecular formula $C_7H_5N_3O_6$ gives a' = 0.03084, b' = 0.02203, c' = 0.01322, d' = 0.02643 and $\Delta H_f^{\circ'}(g) = -0.01894$ kcal/g. If the Benson method [21] was used, the value -7.69 kcal/mol is obtained, which gives $T_d = 3497$ K. This confirms that the contribution of $\left|\Delta H_{f}^{\circ'}(g)\right|$ of the explosive is small relative to the elemental composition of the $C_aH_bN_cO_d$ explosive. Thus, as

seen in Eqs. (2) and (3) rough estimate of gas phase heat of formation of explosive is sufficient for calculation of detonation temperature.

It is possible to use data on the pure explosives for estimating detonation temperature of their mixtures. Explosives can be used in mixed compositions so as to optimize their performance. To use Eqs. (3) and (4) for mixture of explosives, an equation is required which relate detonation temperature of mixed explosive to pure components. We can assume that the components contribute individually to detonation temperature of mixture [15]. We have found that the following equation is the simplest way to give acceptable results:

$$T_{\rm d,mix} = \sum_{j} x_j T_{\rm d,j} \tag{4}$$

where x_i is the mole fraction of the *j*th component in the mixture of explosives.

Calculated detonation temperatures for underoxidized and overoxidized pure as well as mixed explosives are given in Table 2 and compared with corresponding measured values and computed results by complicated BKWR-EOS and BKWS-EOS. As seen, the introduced simple hand calculated empirical correlations for determining detonation temperatures show surprisingly very good agreement with experimental values, which may be taken as appropriate validation test of the new method with pure and mixed $C_a H_b N_c O_d$ explosives. It is worthwhile to note that by considering large percent deviations generally attributed to experimental measurements of detonation temperature, the agreement between calculated and measured values are also satisfactory. As seen from Table 2, the mean absolute error in detonation temperature for BKWS-EOS, BKWR-EOS and new method are 3.6, 13.8 and 7.0% respectively.

3. Conclusions

The expenditure connected with the development and synthesis of a new energetic material also necessitates the development of theoretical methods as well as various empirical methods complemented the computer output for desk calculations. The complicated computer codes and empirical procedures are convincing evidence of the utility of them for engineering calculations of detonation properties of explosives. There is some uncertainty for determination of radiation in measurement of detonation temperature because it is not known how much it is absorbed from detonation products by the shocked and partially decomposed explosive between the detector and the end of the reaction zone. The explosive with high oxygen content like tetranitromethane produces the products with lots of free oxygen. The observed temperature in this case is higher than one would be obtain for an ideal gas equation of state [2]. The simplest empirical correlations are introduced for desk calculations of detonation temperature of pure and mixed $C_a H_b N_c O_d$ explosives through gas phase heat of formation calculated by group additivity rule and atomic composition of either pure mixed explosive. There is no need to assume detonation products that is usually done by complicated computer codes. Given the chemical formula of a real or hypothetical pure or mixture of explosives, one can estimate detonation temperature that is consistent with large uncertainty of detonation temperature. Since the new method permits a simple calculation of detonation temperature of explosives without using any experimental data, it can be used to any new proposed explosives or any mixtures of explosives in order to obtain specified detonation temperature. Since the necessary data for this method is readily hand calculated with about the same reliance on their answers as one could attach to the more complex computer code without using any experimental data of explosives and detonation products, the results of this work are remarkable. An important result is that the values of gas phase heat of formation and elemental composition of the explosive correlate quite well with the values of detonation temperatures. Though the measured condensed heat of formation is an important factor to consider in designing new energetic materials, there is no need to use it in the present method. However, the introduced correlations require no prior knowledge of any measured properties of explosive and assumed detonation products other than simply calculated gas phase heat of formation by additivity rule.

In brief, this study has led to some simple empirical correlations that can be used for calculations of detonation temperature. It is only based upon the atomic composition of either a pure or mixed explosives and simply calculated gas phase heat of formation by additivity rule, with the same reliability as one might attach to the more complex computer output.

Acknowledgement

This research was supported in part by Institute of Chemical Science and Technology-Tehran-Iran Research Council Grant (no. ICST-8I03-2101).

Appendix A. Glossary of compound names

ABH	Azobis(2,2',4,4',6,6'-hexanitrobisphenyl)				
$(C_{24}H_6N_{14}O_{24})$					
COMP	COMP B-3 60/40 RDX/TNT (C _{2.04} H _{2.50} N _{2.15} O _{2.68})				
CYCLO	TOL-78/22 78/22 RDX/TNT ($C_{1.73}H_{2.59}N_{2.40}O_{2.69}$)				
CYCLO	TOL-77/23 77/23 RDX/TNT (C _{1.75} H _{2.59} N _{2.38} O _{2.69})				
CYCLO	TOL-75/25 75/25 RDX/TNT (C _{1.78} H _{2.58} N _{2.36} O _{2.69})				
CYCLO	TOL-70/30 70/30 RDX/TNT (C _{1.87} H _{2.56} N _{2.29} O _{2.68})				
CYCLO	TOL-65/35 65/35 RDX/TNT ($C_{1.96}H_{2.53}N_{2.22}O_{2.68}$)				
CYCLO	$TOL-60/40 \ 60/40 \ RDX/TNT \ (C_{2.04}H_{2.50}N_{2.15}O_{2.68})$				
CYCLO	$\text{TOL-50/50 } 50/50 \text{ RDX/TNT} (\text{C}_{2.22}\text{H}_{2.45}\text{N}_{2.01}\text{O}_{2.67})$				
DATB	1,3-Diamino-2,4,6-trinitrobenzene (C ₆ H ₅ N ₅ O ₆)				
DEGN	Diethyleneglycol dinitrate (C ₄ H ₈ N ₂ O ₇)				
DIPM	Dipiramide $(C_{12}H_6N_8O_{12})$				
HMX	Cyclotetramethylenetetranitramine $(C_4H_8N_8O_8)$				
HNAB	2,2',4,4',6,6'-Hexanitroazobenzene (C ₁₂ H ₄ N ₈ O ₁₂)				
HNB	Hexanitrobenzene ($C_6N_6O_{12}$)				
HNS	2,2',4,4',6,6'-Hexanitrostilbene (C ₁₄ H ₆ N ₆ O ₁₂)				
NG	Nitroglycerine $(C_3H_5N_3O_9)$				
NM	Nitromethane (CH ₃ NO ₂)				
NONA	2,2',2'',4,4',4'',6,6',6''-Nonanitroterphenyl				
	$(C_{18}H_5N_9O_{18})$				
NQ	Nitroguanidine (CH ₄ N ₄ O ₂)				
OCTOL	$-78/22 77.6/22.4 \text{ HMX/TNT} (C_{1.74}H_{2.59}N_{2.39}O_{2.69})$				
OCTOL-76/23 76.3/23.7 HMX/TNT (C _{1.76} H _{2.58} N _{2.37} O _{2.69})					
OCTOL	-75/25 75/25 HMX/TNT (C _{1.78} H _{2.58} N _{2.36} O _{2.69})				
OCTOL	-60/40 60/40 HMX/TNT (C _{2.04} H _{2.50} N _{2.15} O _{2.68})				
PA Picric acid $(C_6H_3N_3O_7)$					
PENTOLITE 50/50 TNT/PETN (C _{2.33} H _{2.37} N _{1.29} O _{3.22})					
PETN	Pentaerythritol tetranitrate ($C_5H_8N_4O_{12}$)				
RDX	Cyclomethylene trinitramine $(C_3H_6N_6O_6)$				
TATB	1,3,5-Triamino-2,4,6-trinitrobenzene (C ₆ H ₆ N ₆ O ₆)				
TETRYL <i>N</i> -Methyl- <i>N</i> -nitro-2,4,6-trinitroaniline (C ₇ H ₅ N ₅ O ₈)					
TNM	Tetranitromethane $(C_1N_4O_8)$				

TNT 2,4,6-Trinitrotoluene (C7H5N3O6)

References

- [1] M.S. Abdualazeem, High Temp.-High Press. 30 (1998) 387.
- [2] C.L. Mader, Numerical Modeling of Explosives and Propellants, 2nd ed., CRC Press, 1998.
- [3] H.B. Levine, R.E. Sharples, Operator's Manual for RUBY Lawrence Livermore Laboratory Report UCRL-6815, Livermore CA, 1962.

- [4] M. Cowperthwaite, M.W.H. Zwisler, TIGER Computer Program Documentation, Stanford Research Institute, 1973, SRI Publication Number 2106.
- [5] A.L. Nichols, F.H. Ree, CHEQ 2.0 User's Manual, UCRL-MA-106754, Lawrence Livermore National Laboratory, Livermore, CA, 1990.
- [6] L.E. Fried, W.M. Howard, P.C. Souers, CHEETAH 2.0 User's Manual, Lawrence Livermore National Laboratory, Livermore, CA, 1998.
- [7] C.L. Mader, Detonation properties of condensed explosives computed using the Becker–Kistiakosky–Wilson equation of state, Los Alamos Scientific Laboratory Report LA-2900, New Mexico, 1963.
- [8] S.J. Jacobs, Proceedings of the 12th Symposium (International) on Combustion, Pittsburg, PA, Combustion Institute, 1969.
- [9] M. Cowperthwaite, W.H. S Zwisler, Proceedings of the Sixth Symposium (International) on Detonation, Coronads CA, Washington, DC, Office of the Chief of Naval Operations, 1976.
- [10] K. Tanaka, Proceedings of the Sixth Symposium (International) on Detonation, Albuquerque, New Mexico, Washington, DC, Office of the Chief of Naval Operations, 1985.
- [11] M. Fringer, E. Lee, F.H. Helm, B. Hayes, H. Hornig, R. McGuire, M. Kahara, M. Gudiry, Proceedings of the Sixth Symposium (International) on Detonation, Coronads, CA, Washington, DC, Office of the Chief of Naval Operations, 1976.
- [12] M.L. Hobbs, M.R Bear, Calibrating the BKW-EOS with a large product species database and measured C–J properties, in: Proceedings of the 10th Symposium (International) on Detonation, Boston, MA, 1993.

- [13] M.H. Keshavarz, M. Oftadeh, High Temp.-High Press. 34 (2002) 495.
- [14] M.H. Keshavarz, M. Oftadeh, Bull. Kor. Chem. Soc. 24 (2003) 19.
- [15] M.H. Keshavarz, M. Oftadeh, Ind. J. Eng. Mater. Sci. 10 (2003) 236.
- [16] M.H. Keshavarz, H.R. Pouretedal, Thermochem. Acta 414 (2004) 203.
- [17] M.H. Keshavarz, Thermochem. Acta 428 (2005) 95.
- [18] M.H. Keshavarz, J. Hazard. Mater. A 119 (2005) 25.
- [19] M.H. Keshavarz, H.R. Pouretedal, Propell. Explos. Pyrotech. 30 (2005) 25.
- [20] B.T. Fedoroff, O.E. Sheffield, Encyclopedia of Explosives and Related Items PATR 2700, vol. 4, Picatinny Arsenal, Dover, New Jersey, 1969, p. D589.
- [21] S.W. Benson, F.R. Cruickshank, D.M. Golden, G.R. Haugen, H.E. O'Neal, A.S. Rodgers, R. Shaw, R. Walsh, Chem. Rev. 69 (1969) 279.
- [22] Y. Yoneda, Bull. Chem. Soc. Jpn. 52 (1979) 1279.
- [23] R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York, 1987, pp. 152–157.
- [24] R. Chirat, G. Pittion-Rossillon, J. Chem. Phys. 74 (1981) 4634.
- [25] M.H. Keshavarz, Ind. J. Eng. Mater. Sci. 12 (2005) 158.
- [26] M.H. Keshavarz, M. Oftadeh, High Temp.-High Press. 35/36 (2003/2004) 499.
- [27] A. Bailey, S.G. Murray, Explosives Propellants and Pyrotechnics, Brassey's (UK) Ltd., 1989.
- [28] M.J. Kamlet, H. Hurwitz, J. Chem. Phys. 48 (1968) 3685.